Meeting Banner
Abstract #2237

Regularized Reconstruction Using Redundant Haar Wavelets: A Means to Achieve High Under-Sampling Factors in Non-Contrast-Enhanced 4D MRA

Jun Liu1, Jeremy Rapin1, Ti-chiun Chang1, Peter Schmit2, Xiaoming Bi3, Alban Lefebvre1, Michael Zenge2, Edgar Mueller2, Mariappan S. Nadar1

1Siemens Corporate Research, Princeton, NJ, United States; 2Siemens AG, Healthcare Sector, Erlangen, Germany; 3Siemens Medical Solutions USA Inc., Chicago, IL, United States

Non-contrast-enhanced 4D intracranial MR angiography (NCE 4D MRA) is a promising non-invasive technique for visualization of vascular anatomy. In this paper, a parallel imaging method is proposed that makes use of a regularization based on 4D redundant Haar wavelet transformation, which allows for incorporating both spatial and temporal structures. NCE 4D MRA images were reconstructed from k-space data that was under-sampled according to a spiral phyllotaxis pattern. Our results show that excellent results can be achieved with an acceleration rate of even 13.7.

Keywords

accelerating achieve achieves acquiring acquisition adjacent anatomy applied artifacts blood channels cine clinical close coil coils color comparable constant contrast corporate dataset denote depicting desired dimensional direct discussed diverse eddy effective enhanced error especially evolving excellent exploits fidelity field fine full function generate generated give gives grid healthy hods illustrates illustration imposed included incorporate independent inflowing inform intensity interpolation invasive inverse inversion inverted last like long makes math matrix maxim measured medical mens minim nearest novel occupied ongoing onto operation operator pace parallel partial partition pattern peter pixel previous problem product proposed proven quality quire quite readout readouts reconstruct reconstructed reconstruction reduce reduction redundant regularized representative represented requires resolution respectively root rotated sampled samples sampling scheme sector selective sensitivity sets slice solutions solved space spatial spiral squares structures studies system target temporal tensor tensors term tool trans transform transformation transverse trio turn uniform usually vascular wavelet wavelets ween wing zero zoomed