Meeting Banner
Abstract #2235

Sparse BLIP: Compressed Sensing with Blind Iterative Parallel Imaging

Huajun She1, Rong-Rong Chen1, Dong Liang2, 3, Edward DiBella4, Leslie Ying3

1Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States; 2Shenzhen Institutes of Advanced Technology, Shenzhen, China; 3Department of Electrical Engineering and Computer Science, University of Wisconsin, Milwaukee, WI, United States; 4Department of Radiology, University of Utah, Salt Lake City, UT, United States

This work investigates the blind multichannel under-sampling problem where both the channel functions and signal are reconstructed simultaneously. We propose a new approach to blind compressed sensing in the context of parallel imaging where the sensing matrix is not known exactly and needs to be reconstructed. The proposed method effectively incorporates the sparseness of both the desired image and coil sensitivities in reconstruction of both the coil sensitivities and image simultaneously from randomly-undersampled, multichannel k-space data. The proposed method is compared with Sparse SENSE and L1 SPIRiT and demonstrates a significant improvement in image quality at high reduction factors.

Keywords

able accelerate accuracy addition adjusted advanced advantageous alternating array artifacts assumption avoids beyond blind blip brain cause channel channels china city codes coil comes compressed computation computationally computer concept conjugate consistent constants constraint constraints context control convex decreasing denotes density desired domain done dong effectively eight either electrical energy enforces engineering estimation experimental explicit favors final framework function functionals functions general global greedy grid guaranteed head important improvement improving in vivo inaccuracy incoherent incorporates initial institutes intensity intensive iterative joint known lake longer loss matrix minimize minimized minimizing model models multichannel name needed objective optimization parallel parametric people phantom pixel positive potentially prior problem product propose proposed quality radiology random reconstruct reconstructed reconstruction reconstructions reduction regarded resolution respect root salt sampling saves scanner search sense sensing sensitivities sensitivity significantly slice solution solve space sparse sparseness spatial spatially spin spirit squares still stops subject success suppress theory torso uniform unknown unknowns usually variable variation