Meeting Banner
Abstract #2233

Highly Accelerated Parameter Mapping with Joint Partial Separability and Sparsity Constraints

Bo Zhao1, 2, Wenmiao Lu2, Zhi-Pei Liang1, 2

1Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; 2Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

A new reconstruction method is proposed for accelerating parametric mapping using partial separability and sparsity constraints jointly. The joint use of the two constraints yields parameter maps with higher spatial resolution and SNR than several state-of-the-art methods.

Keywords

accelerate accelerated accelerating acceleration achieve adapted advanced anal basic blurring brain capture central compressed computer conditioning consists constrain constraints convex counterparts desired determine determining direct dynamic easily echoes effectively engineering example existing expressed extended fast finite fitting fixed formulated formulation fully great half healthy highly hods illustrate illustrates imposing incur institute intrinsic inverse issue joint jointly long mapping maps matrix measured model named noise nonlinear parametric parse pattern performance posed problem process prop properties proposed quadratic recently reconstructed reconstruction reconstructions reduced represents resolution respectively sampled samples sampling schemes science separability separable severe solved solving space spacing sparse sparsely sparsity spatial spin squares stabilize subspace suffers technology temporal theory useful utility variable variation volunteer weightings written