Meeting Banner
Abstract #2101

Resting State Functional Networks VS. Structural Networks: What Do Their Differences Tell Us?

Jose Angel Pineda-Pardo1, 2, Elena Molina1, Ana Beatriz Solana1, Kenia Martinez3, Roberto Colom3, Javier Martin Buldu4, Juan Antonio Hernandez Tamames1, Francisco del Pozo Guerrero2

1Laboratory of Neuroimaging, Center for Biomedical Technology - Universidad Politecnica de Madrid and Universidad Rey Juan Carlos, Pozuelo de Alarcon, Madrid, Spain; 2Laboratory of Biosignal and Brain Connectivity Analysis, Center for Biomedical Technology - UPM, Pozuelo de Alarcon, Madrid, Spain; 3Universidad Autonoma de Madrid, Spain; 4Laboratory of Biological Networks, Center for Biomedical Technology - UPM, Pozuelo de Alarcon, Madrid, Spain

In this work we present a new comparative approach aiming to find differences between structural connectivity and resting state functional connectivity (SC-rsFC) networks focusing in the organization of their connections. We compare weights distribution, normalized graph metrics, links orientation, and Rentian scaling in order to find out how rsFC differs from SC network. Structural connectivity was obtained by means of a graph based tractography method instead of usual deterministic tractography. We found out that rsFC network was less spatially optimized than SC in terms of Rentian scaling and normalized graph metrics. We also observed different tendencies in the links orientations when the weights distributions of the networks are compared.

Keywords

acquisitions adding additionally aiming analyzing anatomical angel appeared approaches artifacts attempt background band basset belonging biological biomedical bold brain carried closer closest common comparative comprised computational computed computing concordance connection connections connectivity correction correlations cosines courses crossing dates days define dependence depicted describe despite diffusion distance distributed distribution efficiency either euclidean exhaustive exponent females filter find finding fits focusing framework free frontal functional gain generative give gradient graph gray hemispheres highlighting honey hubs improve indicating indirect insights intrinsic keep laboratory least linear links lobe martin matrices metrics modalities model models mostly motion network networks nodes normalized optimal organization orientation parallel patterns physical power predominance preprocessed probabilities probability processed properties quantified random realignment reflects rejected related rent reported reproducibility resolution resting sample scale scaling scanner separated series shot slice space spectrum strength strengths strongly structural structure studied subjects superior symmetric technology tell tensor theory threshold thresholded version view volumes whereas wiring young