Meeting Banner
Abstract #1972

A Linear Algorithm of the Reference Region Model for DCE-MRI Is More Robust and Relaxes Requirements for Temporal Resolution

Julio Crdenas-Rodrguez1, Christine M. Howison2, Mark D. Pagel3

1Chemistry and Biochemistry, The Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; 2Arizona Research Laboratories, University of Arizona, Tucson, AZ, United States; 3Department of Biomedical Engineering, Chemistry and Biochemistry, and The Arizona Cancer Center, University of Arizona, Tucson, AZ, United States

We have developed a new Linear Reference Region (LRRM) model for DCE-MRI, and compared its performance with the standard Non-Linear Model (NLRRM) using simulations and pre-clinical DCE-MRI data. The LRRM estimate the relative Ktrans of tow tissues more accurately than the standard NLRM at coarser temporal resolution (128 sec vs. 32 sec), and lower SNR (15 vs 30). These results show that our LRRM algorithm can be used to translate the Reference Region Model to clinical setting.

Keywords

accuracy accurately activity analyze animal animals approximately arterial biochemistry biomedical cancer catheter chemistry clinic clinical clinically coefficients combinations concentration consecutive consistently constants contrast correlation curve curves days determined determines developed dynamic eleven endogenous engineering enhancement error errors especially essential fifth fitting five flank function generate generated geometry great hypothesize independent initiating injected injection input instead justified laboratories least limit linear manually maps mark mice model muscle noise overcome parametric performance phys pixel poorly precision problems pulse rare reached recalculated relaxes relevant replacing requirements requiring resolution robust sampling series sets severe simulations slices slow slowed squares statistical studies surrogate systematic tail temporal thick tissue translation tumor twice type typical underestimates variable vein volume wise