Meeting Banner
Abstract #1950

Bayesian Model-Based Correction for Macro Vascular Signal in Dynamic Susceptibility Contrast Perfusion MRI

Michael A. Chappell1, 2, Amit Mehndiratta1, Stephen J. Payne1, Fernando Calamante3

1Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom; 2FMRIB Centre, University of Oxford, Oxford, United Kingdom; 3Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia

Macro vascular (MV) contamination from contrast agent in major arteries is a significant source of bias in Dynamic Susceptibility Contrast (DSC) perfusion measurements. In this work we propose a model-based approach for MV correction that includes a MV component within a previously proposed vascular model for DSC data.

Keywords

account addition affected agent although appears apply arises arterial arteries artery attempt automatic biomedical blood brain branch brought calculation capillary carotid central cerebral characteristic chosen combination combined component components consistent contamination contrast contribution conversion convolution correction datasets decomposition deconvolution deep defined defining delay delivery derived describes describing difficulty distinct distribution done dose double dynamic engineering expected extend find fitting flow function gadolinium gradient greater hence identification identified identify identifying illustrated illustrates implementation inclusion inference institute institutes kingdom larger library linear macro magnitude manner manually measured middle model multiplied negligible occlusion onset oxford partial passing pathology patients penguin percent perfusion permits post presence prior proposed rather recent recently reduced regarding reliably reliant remove represent represented residual residue scaled scanned semi shape similarity singular software solution spin stroke subject subsequently substantial substantially supplied susceptibility table theory tissue trans transformation transit underestimation upon upper useful variant variants variations vascular vicinity visible volume whereas white