Meeting Banner
Abstract #1937

Template Estimation for a Group of DSI Datasets Using LDDMM

Yung-Chin Hsu1, Ching-Han Hsu, Wen-Yih Isaac Tseng2

1National Tsing Hua University, Hsinchu, Taiwan, Taiwan; 2National Taiwan University College of Medicine and Hospital

To our best knowledge, no method has been proposed to construct the template which is intrinsically from a group of DSI datasets. In the current study, we proposed an algorithm to iteratively estimate the group-specific DSI template, which incorporated a LDDMM-based method capable of spatially transforming between two DSI datasets. Seventy DSI datasets were recruited into the template estimation procedure. The results show the proposed method could construct the DSI template where many important fibers could be tracked out on it, indicating the effectiveness of the method.

Keywords

absolute address aligned alpha although among analyze another apparently applying article best blue brain brown bundle chin college completely consistent construct constructed convergence converges corresponds dataset datasets defined definition deformation descriptions diffusion effectively embedded encoded encodes equation estimation expected facilitate field fields finally flow framework general generated good healthy hence hospital identification implemented important include individual inferior initial instance integrating integration inter introduced investigate issue iterated iteration iterations iteratively journal knowledge literature longitudinal manner mapping maps match materials mathematical matrix metric middle miller minimize momentum momentums national occipital offers pink plots preferable preprocessing previously principle procedure properties property proposed registered residual resolution reveal rigidly rotational scanner scenario selected semi seventy several shape since smoothing sometimes space spatial spatially spectrum squared step steps stop structural structure structures studies subject subjects suggested symmetry template third though threshold tracts transform transformation transformed transforms translational trio usually vanishes velocity vision visually white whole widely yellow