Meeting Banner
Abstract #1909

Maximal Entropy Tractography

Lawrence R. Frank1, David Meyer2

1Radiology, UCSD, San Diego, CA, United States; 2Mathematics, UCSD, La Jolla, CA, United States

We have developed a fiber tractography method that computes the maximum entropy trajectories between locations and depends upon the global structure of the diffusion tensor field. Computation of the pathways requires only solving a simple eigenvector problem for which efficient numerical routines exist, and a simple iterative computation. This method has potential significance for a wide range of applications, including studies of brain connectivity.

Keywords

acquisition adjacency anisotropy applications applied brain categories clarity coefficients collected combining computation computational computed computes computing connected connection connectivity construct constructed construction coupling created defined defines degree depend determining deterministic developed differ diffusion distribution distributions drawn dual efficient eigenvalue eigenvector elements endpoint endpoints entropy equal equating except fact fall fiber field final finding finite form fractional frank frequency generated generating generic global globally governed gradient graph graphs hence hops initial iterative largest lattice length likely linked little local localizes location mathematics matrix maximal maximally maximize neighboring neural node nodes numerical optimal particle particles passing past path pathway pathways placed posterior potential principal probabilistic probabilities probability problem problematic properties radiology random rather reconstructed recursively regular representation sample seed sense simple slice sparse specified sphere spin stationary step stored straightforward streamline structure studies symmetric tensor tensors theory threshold tract trajectories trajectory trans transition truly typically unequal unique upon user visualized walk white wide