Meeting Banner
Abstract #1889

Anisotropic Error Propagation in Q-Ball Imaging

Rdiger Stirnberg1, Tony Stcker1, N. Jon Shah1, 2

1Institute of Neuroscience and Medicine - 4, Forschungszentrum Jlich, Jlich, Germany; 2Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany

Several publications have addressed the analysis of anisotropic error propagation in DTI, i.e. as a function of fibre orientation. Recently, model-free diffusion imaging methods requiring high angular resolved diffusion imaging acquisitions have gained in popularity, e.g. q-ball imaging (QBI). In this abstract, QBI error anisotropy without and with noise (Monte Carlo simulation) is compared for different encoding scheme types with 30 to 240 directions and constant number of excitations. It is shown that QBI error anisotropy converges to a minimum with increasing numbers of diffusion weighting directions provided an encoding scheme type offering a high degree of uniformity is used.

Keywords

accompanying according accuracy acquisitions additionally addressed allows almost although analog analogy analytical angular anisotropic anisotropy applied applying assessment authors available ball become best bias bottom charges choice chosen clearly column commonly comparably configuration configurations constant contrast converge coulomb counterbalance crucial curves decrease deduces defined defines denoted density depends derived described designed destructive deterministic deviation diffusion directional disco displays distinguished distributed divergence drawn easy encoding error errors example excitations expansion fixed fractional free function functions ground harmonics hemisphere icosahedral impact inherent inserted instead institute introduces investigated kept known limit medicine middle model moderate monotonically neurology noise none note numerically often orientation orientations originally past popular practical precision prolate propagation proper proportional publications quantifies quickly reasonable recently reconstructed reconstruction refers regard repeated repetitions require response sampled sampling scheme schemes several shell simulated simulations space sphere spherical spiral symmetric tensor tessellation though true truth type types typical unequal uniform uniformity uniformly unique useful various