Meeting Banner
Abstract #1884

Compensation for Bias from Unwanted Gradient Contributions in STEAM Diffusion MRI

Daniel C. Alexander1, Tim B. Dyrby2

1Centre for Medical Image Computing, Dept. Computer Science, UCL, London, United Kingdom; 2Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

We present a simple method to avoid bias introduced by crusher and slice select gradients in stimulated echo diffusion MRI. We demonstrate the necessity of using such a compensation in classical diffusion tensor imaging and ActiveAx axon diameter index mapping.

Keywords

account accounting accounts acquisition additional addresses adjusts advantageous advantages affect alone angular approximation approximations attenuation axon axons better bias biases bottom brain butterfly comp compensate compensated compensating compensation complicate component computer computing consists consortium contribute contributions corpus cross crusher crushers cylinder dept derive design diameter differ diffusion disrupted distributed distribution effective emphasizes enables enabling ensuring estimation experiment expression free good gradient gradients greater hospital human ignores ignoring important independent index intensity introduces invariant issues kingdom linearity long magnitude makes maps matrix maximizing middle minimal model monkey much naively necessary necessity need negative numerical offers offsetting omit optimize orientation pattern predicted price principal produced product propose protocol protocols prove qualitatively quantifies quantify reconstructed reduces reflects required resolution restricted sampling scales scanner schematic search select sensitivity separated sets shell shells short simple slice spin steam stimulated strength suggest systems target tensor terms text though towards trend uncompensated unwanted variance vectors weaker yellow zero