Meeting Banner
Abstract #1869

Cortical Surface Based Representation of Diffusion: A Marmoset Study

Mustafa Okan Irfanoglu1, 2, Frank Q. Ye3, Evren zarslan1, David Leopold3, Afonso C. Silva4, Carlo Pierpaoli1

1NIH, NICHD, Bethesda, MD, United States; 2Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; 3NIH, NIMH, Bethesda, MD, United States; 4NIH, NINDS, Bethesda, MD, United States

Diffusion in the brain cortex has a complicated structuture. Traditional image axes based coordinate frameworks might not be suitable to analyze finer level details of this process and a new representation may be needed. In this work, we propose to analyze the diffusion properties relative to a "cortex based coordinate framework". We use an ex-vivo marmoset data to analyze the diffusion both wit the tensor and spherical harmonics model.

Keywords

acquisition acquisitions additionally adult analyze angular anisotropic anisotropy applied artifact artifacts assessment attributed available behavior better birdcage boundary brain brighter carried cerebral class classes cluster coil collected colors complex computed considered considering constant coordinate corrected cortex cortical darker deeper defined depict detailed diameter diffusion directly discriminate displayed displays documented dominate eddy eigenvector employed enable enables entirety exceptions extract extracted extraction fact features fiber fine fixed flattened folding formalin framework frameworks frank frontal global harmonics health healthy indicate indicated indicating initial initially interface interpolation isotropic label layer lobes local localized locally maps marmoset materials matrix maximization middle mostly normalized novel onto orientation pattern patterned patterns plastic populations presence primary process processing properties providing purple purposefully quality quantities rather regenerative regression relatively representation representative represents rotated scanned scanner sciences segmentation segments serve shape shapes slices software solid space spherical spin start structured subsequently surface tends tensors though tones tube uniformed vectors vertex whereas