Meeting Banner
Abstract #1837

Composite Inversion Recovery DTI Model Can Seperate Sub Voxel Components

Daniel Barazany1, Yaniv Assaf1

1Neurobiology, Tel Aviv University, Tel Aviv, Israel

Inversion recovery diffusion tensor imaging (IR-DTI) framework presented in this work shows that integrating different tissue characteristics allow more accurate definition of tissue compartments. IR-DTI framework is applicable, and requires only two DTI scans with different TIs which will provide means to differentiate between different sub-voxel diffusion components. The analysis of multiple IR-DTI dataset is done by a bi-tensor model, where each component has its own T1 and diffusion characteristics. In this work we were able to differentiate between the optic and sciatic nerves, where each attribute distinct T1 and diffusivity characteristics.

Keywords

according accurate acquisitions adiabatic allow almost amount analyze anatomy applied attenuated axon axons basis boundaries bundles characteristics classifications combining common composite content contents cope cortex cortical crossing decay definition description detection diameter differ differentiate diffusion diffusivity distinguish distribution done eliminated emphasis enough even exam examined explore exponential fiber fibers fixation fluid framework free function geometric grad human inability includes integrating inversion investigate know lasted lattice limited linearly long longitudinal matrix micro might mine model modeled nerve nerves neurobiology note occur occurs opposite optic partial pass patterns phantom physical placed plan populations porcine prior properties property recovery relax resolution sciatic sensitive separating separation sets several shorten shot simultaneously since slice spin strength striate stripe structural structure tensor tensors tissue visual visualization ween weigh whether white