Meeting Banner
Abstract #1783

Metabolic Profiling of RG2 Glioma Using in vivo 1H MRS and ex vivo HRMAS 1H MRS

Vasile Stupar1, 2, Coquery Nicolas2, 3, Farion Rgine1, 2, Emmanuel Luc Barbier2, 3, Chantal Rmy2, 3, Florence Fauvelle4

1Precilinical MRI Facility, Grenoble, France; 2U836, INSERM, Grenoble, France; 3Universit Joseph Fourier, Grenoble, France; 4IRBA antenne CRSSA, La Tronche, France

In Vivo 1H MRS can provide information regarding glioma growth and response to treatment. A wider range of metabolites can be obtained ex vivo in biopsies using HRMAS 1H MRS. The metabolic data can be interpreted and classified using multivariate pattern recognition methods, such as Projection to Latent Structure-Discriminant Analysis (PLS-DA). Comparison of metabolic profiles between 1H MRS and HRMAS 1H MRS is essential and the ability of both approaches to discriminate tumoral from normal tissue with statistical tools such as PLS-DA might help for diagnosis. We have used this approach in the rat RG2 model of glioma.

Keywords

ability acetate acid acquisition added alanine allow amino analyses analytical anesthetized animal approaches assignment bandwidth basis besides biopsies bulk calculation cancer cells choline class classified clear cold components consequences controversial cross decapitated decrease deeply delay described design despite diagnosis discriminate emergence evaluation experimental facility frozen gill glutamate good help highly identification implanted in vivo included individual interestingly interpreted introduced investigate involves isolated iteratively kept lactate latent lead lipid liquid localization magic materials metabolic metabolism metabolite metabolites minutes model models modules multivariate needed nitrogen pattern plot plotting powerful preceded predict prediction predictive press procedure processed profiles profiling projection pulse quality quantification quantified quickly rapidly rare rats rebuilt recognition regarding reliable remaining residual resolution response robust rotor samples scatter separation serves short significance simulated since slices software spectra spectrometer spectrum spin spinning statistical structure studies subsequently suppression synchronized system tool tools training treatment tumor unit usually validate validated validation variables variance version visualized water weeks