Meeting Banner
Abstract #1752

Optimizing 2DJ Experiments Using Cramer Rao Minimum Variance Bounds

Christine Sandra Bolliger1, Chris Boesch1, Roland Kreis1

1Depts Clinical Research and Radiology, University Bern, Bern, Switzerland

A method to optimize 2DJ experiments is presented. It is aimed at quantification of a set of metabolites and is based on searching acquisition parameters that yield minimal Cramer Rao Minimum Variance Bounds (CRBs). We present optimized experiments for GABA, glutamate, glutamine and glutathione quantification in human gray matter.

Keywords

achieved acquiring acquisition addition almost analogous applies apply arbitrary array assumed attainable bars basis benefit best bound bounds brain calculation call careful circumstances clinical combinations common complete concentrations concepts considered constant contrary conversely coupled covered criteria crucial dedicated default depend diagonal domain equally especially expected experiment experimental feature final fitted fitting fixed foundation frequency functions generalized glutamate gray grid half help human ideal identified improve improvement improves incremented individual inner largest like linear literature macromolecular mater metabolite metabolites minimal model modeled mostly national neurotransmitters noise optima optimal optimization optimized optimizing optimum parameterized penalty percent potential precision preserves press previously prior prioritized proof proven pulses quality quantification radiology rather repetitions restriction sampled sampling saving science search select selected selection series shim shorter simulated simultaneous since spaced spectra starting step steps strategies strength strictly studies substantially suggested suited supported swiss table tend text transformation treatment valid validity variance virtually whether widths yield yielding