Meeting Banner
Abstract #1253

KLT and Wavelet Filtering: Reducing Noise in Highly Accelerated Dynamic Images

Prashanth Palaniappan1, Orlando P. Simonetti2, 3, Yu Ding2, Rizwan Ahmad2, Hui Xue4, Ti-chuin Chang4, Christoph Guetter

1Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; 2Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; 3Department of Radiology, The Ohio State University, Columbus , OH, United States; 4Siemens Corporate Research, United States

In our current study, we propose a novel approach to de-noise

Keywords

ability accelerated acceleration achieve acquiring acquisition acquisitions adaptive advantage affected another applied apply approaches assessed association automatic axis bandwidth better blood blurring boundary breathing cardiac causing cine combined combines computer concentrated contain corporate correlations cover covered cutting cycle define degradation describe ding distance dynamic easily edge electrical energy engineering enhance established estimation expense explored expressed extended fall filter filtered filtering frames free gain generating healthy heart highly horizontal improve in vivo included increasing inevitably institute intrinsic investigating lacking length lengths long longer lung manufacturers matrix measured myocardium national neither noise original output parallel pass penalty performance perfusion perpendicular pixel pixels plus pool post primarily processing proposed providing radiology ranging real reconstructed reduced reducing reduction redundancies redundancy resolution rise sacrifices scanner selection series sharpness short significantly simultaneously slice space spatial steps strength stronger sufficient superior taking temporal thick threshold traded training trans transform trio typically user variance velocity vertical views visible volunteers wavelet whole