Meeting Banner
Abstract #0751

Validation of Fully Automatic Adipose Tissue Segmentation & Volume Quantification

Bryan T. Addeman1, Melanie Beaton2, Robert A. Hegele3, Abraam S. Soliman3, 4, Curtis N. Wiens5, Charlies A. McKenzie1, 5

1Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; 2Department of Medicine, University of Western Ontario, London, ON, Canada; 3The Robarts Research Institute, London, ON, Canada; 4Biomedical Engineering, University of Western Ontario, London, ON, Canada; 5Department of Physics, University of Western Ontario, London, ON, Canada

The distribution of adipose tissue is associated with the long-term development of type 2 diabetes and cardiovascular disease. Most adipose tissue volume quantification techniques require manual input, are susceptible to human error, and are time consuming. We propose a novel automated process for the quantification and segmentation of Total Adipose Tissue, Subcutaneous Adipose Tissue, and Intra-Abdominal Adipose Tissue using quantitative fat fraction maps. Segmentation is robust and requires no prior knowledge or complex machine learning. Results show that automated fat volume measurements are similar to manual segmentation techniques and can be calculated very rapidly.

Keywords

abdominal ability accurately acknowledgments acquisitions addition additionally adipose adjacent agrees allow appears approval automated automatic automatically available background bars bias binary biophysics bland body bone bottom boundary bridged caution cavity chairs channel class classes coil coils collected complete completed confidence connected constrain containing conversely converted coordinates corrected created dashed define directly discarded distal echoes edge effective either enclosed engineering error excellent exclude fatty fitted flex fraction fractions general gratefully healthy hepatic ideal identified in vivo inside institute intensity interval intervention intra lava length lipids liver located locating lowest manual maps marrow mask matrix measure measuring medical medicine noise normalized novel observer omitted patients percentage perfectly peritoneal peritoneum physics plot polar previously process propose quantification quantitative rapidly regional registered represents reproducible require segment segmentation segmented sensitivities separation slice slices smoothness solid splits subcutaneous subjects subset support surface take thigh thighs threshold tissue tissues transverse unaffected validated validation variations versus volume volumes water western yield