Meeting Banner
Abstract #0180

Quantitative Biomarkers of Cancer from Metabolic Activity Decomposition Using Stimulated-Echoes and Hyperpolarized Carbon-13 MR

MAGNA25Christine M. Leon1, 2, Peder EZ Larson1, Adam B. Kerr3, Robert Bok1, John M. Pauly3, John Kurhanewicz1, Daniel B. Vigneron1

1Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States; 2UC Berkeley | UCSF Graduate Group in Bioengineering, University of California, Berkeley and University of California, San Francisco , San Francisco, CA, United States; 3Department of Electrical Engineering, Stanford University, Stanford, CA, United States

We propose a new and robust method for quantification of dynamic data. Using Metabolic Activity Decomposition, we investigated real-time conversion parameters as biomarkers of cancer. ex vivo enzyme experiments validated the technique, allowing for direct observation of real-time conversion, which can only be due to the LDH enzyme. Conventional modeling yields four unknowns but only two equations, an underdetermined system of equations. Using Metabolic Activity Decomposition, twice the amount of information can be obtained from a same acquisition providing a well-conditioned system. Moreover, fitting in vivo data with MAD-STEAM yielded KPyr→Lac values that robustly distinguished tumor versus normal (p-value=0.009)

Keywords

ability able accurately acknowledge acknowledgments acquisition activity actual addition adiabatic allow amount amplitudes applied assessments assistance assumptions better bioengineering bulk cancer cancers carbon cell choosing complicated conditioned containing contrast conversion creates curves decomposition decreased describe differentiate diffusion direct directed directly disease distinguish double dynamic early echoes electrical engineering enzyme equations excess expression external extremely fitting flow flux formation forward frequency funding galen generated generation graduate improve improved in vivo inaccurate increasing isotope john kinetic kinetics known lactate like magnitude measures membrane metabolic metabolism mice mode model modeling models moreover motion natl necessitating noise normalized observation perfusion phantom pool precede presence probe progression progressive propose providing quantification quantitative radiology real recent reconstruction reed regression removes repeated robust separated shin sided significantly slab solution specifically specificity spectra spin spins stability steam step stimulated substrates suppress system tissue toward tramp trans transport treatment tumor twice underestimates unique unknowns unpaired urea validating vascular versus yielded yielding yields