Meeting Banner
Abstract #0078

MMSE Optimal Non-Local Motion Compensation for Compressed Sensing Cardiac Cine Imaging Using K-T FOCUSS

Huisu Yoon1, Jong Chul Ye1

1Bio and Brain engineering, KAIST, Dae-jeon, Korea, Republic of

Compressed sensing (CS) tells us that the perfect reconstruction is possible if the nonzero support in transform domain is sparse and sampling basis are incoherent. By exploiting that dynamic MRI can be sparsified due to the temporal redundancy, we have demonstrated successful application of CS for cardiac imaging. In particular, more accurate prediction using motion estimation/compensation or data-driven optimal temporal sparsifying transforms have proven to be quite effective. However, despite their successes to some extent, there still remain considerable artifacts in edge area when the acceleration factor increases.We propose a non-local motion compensated k-t FOCUSS which generates more accurate prediction images than the existing motion compensated k-t FOCUSS. Non-local motion compensation retrieves similar blocks in another reference frame, not within the processed dynamic frame itself. Non-local motion compensation is shown MMSE optimal and experimental result shows that the proposed algorithm clearly reconstruct the important cardiac structures and improves over k-t FOCUSS.

Keywords

acceleration accurate another application artifacts assumed axis basis best better biology block blocks boundaries brain called cardiac cine collection comes compensated compensation compressed computer conference currently denotes despite diagonal diastole dimension distribution domain driven dynamic edge effective encoding engineering entire error estimation estimator existing experiment exploiting extent foundation frame frames frequency generates grant heart idea identical important improvement improves incoherent index iteration iteratively leads least like local make matching matrix medicine moreover motion multiplier near nonzero optimal original outperforms outside paper particular patch patches pattern patterns perfect periodic physics pixel prediction prior problem proceedings processed profiles promises propose proposed proven providing quality quite random recognition reconstruct reconstruction redundancy remain replaced represented republic residual resolution restoration retrieved sampling schematics sense sensing since slice smoothing society solution solving space sparse sparser spatial specifically square squares still structures successes successful support supported tells temporal term thank theory trans transform transforms usually views vision wall