Meeting Banner
Abstract #0041

Parameterizing the Logistic Model of Tumor Growth by DW-MRI & DCE-MRI to Predict Breast Tumor Cellularity During Neoadjuvant Chemotherapy

SUMMA25Nkiruka C. Atuegwu1, 2, Lori R. Arlinghaus1, 2, Xia Li1, 2, E Brian Welch1, 2, A Bapsi Chakravarthy3, Thomas E.

Yankeelov1, 2

1Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; 2Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; 3Radiation Oncology, Vanderbilt University, Nashville, TN, United States

Keywords

acquisition added adiabatic advanced allowed artifacts assumed best breast build cancer capacity carrying catheter cell cells chemotherapy clinical coefficient coefficients collected completion concordance confidence conjunction constant contained contrast correlating correlation correlations course cycle cycles deliver density determine diffusion dynamic early encoding enhanced fashion flush future gradient growth histology human impact implemented includes incorporated inform institute interval inversion involve iteration locally logistic longitudinally manually maps mathematical mathematically matrix model modeling models nest newly next occur oncology orthogonal outcome panel parameterizing patient patients planar plot predict predicted predicting previous prior proliferation proportionality pulsed radiation radiological radiology recovery reduce related repeated represents respectively saline saturation scanner science sciences selected sense sequential shot simulated slice specifically spin spoiled switched therapy thirteen treated treatment trial tumor tumors unlike update volume water yield