Meeting Banner
Abstract #0015

T1 Map Reconstruction from Under-Sampled KSpace Data Using a Similarity Constraint

Mohammad H. Kayvanrad1, A. Jonathan McLeod1, John S. H. Baxter1, Charles A. McKenzie1, Terry M. Peters1

1Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada

The similarity between images, in problems involving multiple acquisitions with different imaging parameters, is used as an additional reconstruction constraint beside sparity to further increase the quality of reconstruction/k-space under-sampling. This is of particular interest in reconstruction of T1/T2 maps. From a clinical perspective, this means a reduction in acquisition time.

Keywords

accelerated acceleration acceptable acquiring acquisition acquisitions addition additional affect although another applications applied approaches approved asterisk available becomes beside blue brain clinical coefficient common compromising computed consecutive consider constraint constraints corresponds defined denoted denotes described desirable despot domain ethics expect express expressed finally full fully generality gold gradient gray green holds human hypothesis importance important imposing improve improvement independently instance institute institutional intensity interpolate involving iterative john jointly lead limits long maintaining mapping maps maximizing measured minimizers minutes missing mutual norm noticeable object office often operations optimization particular particularly patient peters priori problem problems protocol pulse quality quantity randomly rationale recalled reconstruct reconstructed reconstruction reduce reduced reducing reduction require resolved respectively sample sampled samples sampling selected sequential series similarity simultaneously since slice slices solution space sparse sparsity spatial spoiled statistical statistics still structural table terms terry traditional transform transforms typical volume volunteer wavelet western white whole