Meeting Banner
Abstract #0009

Direct Diffusion Tensor Estimation Using Joint Sparsity Constraint Without Image Reconstruction

Yanjie Zhu1, 2, Yin Wu1, 2, Ed X. Wu3, 4, Leslie Ying5, Dong Liang1, 2

1Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China; 2Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, China; 3Laboratory of Biomedical Imaging and Signal Processing; 4Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong; 5Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, WI, Milwaukee, United States

The joint sparsity constraint is integrated into the model-based method to improve the accuracy of direct diffusion tensor estimation from highly undersampled k-space data. The method, named model-based method with joint sparsity constraint (MB-JSC), effectively incorporates the prior information on the joint sparsity of different diffusion weighted images in solving the nonlinear equation of tensors. Experimental results demonstrate that the proposed method is able to estimate the diffusion tensors more accurately than the existing method when a high net reduction factor is used.

Keywords

academy accuracy advanced anisotropy applied applies applying artifacts benefits biological biomedical block bottom boxes characterization china coefficients common compressed computer conducted consistency consistent constraint continuous contrast correlation density diffusion diffusivity direct directional directly distributed dong electrical electronic encoding engineering error errors estimation evaluation experimental exploit fewer finite fits fitting formulated fractional full gold health heart heavily hong improve improvement in vivo indicated informatics initial institutes inter intra invasive joint laboratory least listed long mainly many maps mask matrix measured mixed mobility model modulate muscle need negligible neural noisy nonlinearly norm novel observations penalty people performance pixel potential practice processing promote propagation propose proposed quantified random reconstruct reconstructed reconstruction reduce reduction represented represents republic robustness rows scanner sensing sensitive separately share since solved space sparse sparsity speed spin squared squares still strategies strategy structures suffers suggests support table technology tensor tensors theory tissue transform unknowns utilizes variable variation variations vector water weightings welsh whereas