Meeting Banner
Abstract #0006

Compressed Sensing Multi-Spectral Imaging of the Post-Operative Spine

Pauline Wong Worters1, Kyunghyun Sung1, Kathryn J. Stevens1, Kevin M. Koch2, Brian A. Hargreaves1

1Stanford University, Stanford, CA, United States; 2ASL, GE Healthcare, Waukesha, WI, United States

Multi-spectral imaging (MSI) methods such as MAVRIC, SEMAC and Hybrid have been developed in recent years to provide distortion-free MRI of tissue around metallic implants. However, acquisition times remain lengthy (5-15 minutes) and limit the achievable spatial resolution in routine clinical use. In this work, we demonstrate the feasibility of using compressed sensing (CS) to reduce acquisition time in a retrospective application to patient data with spinal hardware. Results show that retrospective CS-MSI are the same as or better than the original MSI images. We also show that fully sampled MSI and prospectively undersampled T2-weighted CS-MSI (42% scan time reduction) are comparable in terms of image contrast and quality.

Keywords

acquisition amount application approximate array arrows artifact bandwidth best better blurring bottom categories chosen clinical coil colors comparable compressed compromising contrast corners correction dataset density depicted details determined developed developments distortion enable enabling encoding examples excite excited experienced exploited extra feasibility forward frequencies fully funding generally geometry goal half hardware human hypothesis index induced inherent inherently inset investigate known lend limited little locations long longer maintain maintaining many maps matched message metal minimization motion much needed nerve next null operative original outer overall pain paired parallel particularly passing paths patients percent post presence probably prospective prospectively quality quantitatively radiologist randomized readout reasonable recent reconstructed reconstruction reconstructions reduce reduction refer relatively resolve resonant retrospective retrospectively roots sampled sampling scale sections semi sensing side sided similarity slice soft somewhat space sparsity spatial spectral spinal spine structural subjects successful surface thirteen thresholding tolerance train unchanged variable variation visualization wavelet windowed withstand worse worst years